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Motivation
Categorify a quantum mechanical description of states and processes.

Sets Categories

Classical
S : A set whose elements are

states of a system

X : A groupoid with:

•Ob: states

•Mor: symmetries of states

Quantum
L2(S): Vector space of states

(in fact, Hilbert space)

Λ(X ): 2-vector space of states

(in fact, 2-Hilbert space)

We also can contrast classical and quantum processes: Each process has a
“start” and “end” point: processes can be described by spans.
At first we will ignore any special structure to S (or X ).
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I will describe the category Span1(Gpd) and 2-category Span2(Gpd), and:

“Degroupoidification”, a functor D : Span1(Gpd)→Vect

“2-linearization”, a 2-functor Λ : Span2(Gpd)→ 2Vect

Both of these generalize an obvious “linearization” functor

L : Span1(Set)→Vect

At first we will assume all groupoids mentioned are finite.
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Definition

A span in a category C is a diagram of the form:
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A span map f between two spans consists of a compatible map:
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A cospan is a span in Cop.
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If C is a category with pullbacks and terminal object I (hence all
products), we can define:

Definition

The category Span1(C) has:

Objects: Objects of C

Morphisms: Isomorphism classes of spans in C

Composition defined by pullback:

X ′ ◦ X
S
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monoidal structure where A⊗ B is the product in C, A× B, and the
unit is the terminal object I
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To linearize a (finite) set, just take the free vector space on it, CA.
Then there is a pair of linear maps associated to f : A→B:

f ∗ : CB→CA, with f ∗(g) = g ◦ f

f∗ : CA→CB , with f∗(g)(b) =
∑

f (a)=b g(a)

The first is just composition with f . The second is the map sending the
vector δa to δf (a).

Using the standard inner product (such that the characteristic functions on
A and B are orthonormal bases), these two maps are linear adjoints.

We can use this pair of adjoint maps to define a functor
L : Span1(Set)→Vect:

Definition

For a set A, let L(A) = CA. Given a span A
s← X

t→ B, define
L(X , s, t) = t∗ ◦ s∗ : L(A)→ L(B).
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So we have:
(L(X , s, t)(g))(b) =

∑
t(x)=b

g(s(x))

This corresponds to multiplication by a matrix counting elements linking
a ∈ A and b ∈ B (“sum over histories”):

L(X , s, t)a,b = #(s, t)−1(a, b)

Composition by pullbacks in Set (fibred products) give an interpretation
of matrix multiplication (counting composite paths):

A×C B =
∐
c∈C

f −1(c)× g−1(c) = {(a, b)|f (a) = g(b)}

Theorem

This L : Span1(Set)→Vect is a monoidal functor.

Note: The linear maps arising from Span1(Set) are all represented by
matrices with positive integer entries. Groupoids (and U(1)-groupoids)
will allow us to capture more of linear algebra.
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Baez and Dolan described groupoidification, a way to extend the above to
spans of groupoids.

Definition

A groupoid is a category in which all morphisms are invertible.

Groupoids describe “local symmetry”:

Example

Any set S can be seen as a groupoid with only identity morphisms

Any group G is a groupoid with one object

Given a set S with a group-action G × S→S yields a transformation
groupoid S//G whose objects are elements of S ; if g(s) = s ′ then
there is a morphism gs : s→ s ′

The category FinSet0 of finite sets and bijections is a groupoid

An orbifold or smooth stack is represented by a (smooth) groupoid
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Definition

The cardinality of a groupoid G is

|G| =
∑

[g ]∈G

1

# Aut(g)

where G is the set of isomorphism classes of objects of G. We call a
groupoid tame if this sum converges.

This has the nice property that it “gets along with quotients”:

Theorem (Baez, Dolan)

If S is a set with a G -action G × S→S, then

|S//G | =
#S

#G

where # denotes ordinary set-cardinality.
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Using groupoid cardinality instead of set-cardinality, one can extend L to a
functor:

D : Span1(Gpd)→ Vect

(Note: since Gpd is a 2-category, composition is by weak pullback.)
For objects: D(G ) = H0(G ) (the zeroth homology CG ).
For morphisms, we modify the formula for sets:

D(X , s, t)(g)([b]) =
∑

[x]∈t−1(b)

# Aut(b)

# Aut(x)
[g(s(x))]

These come from two maps f ∗ and f∗ as before, which are adjoint with
respect to an inner product such that 〈[gi ], [gj ]〉 = 1

# Aut(gi )
· δi ,j . This the

standard inner product on D(G ).
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Definition

A state over a groupoid G, in Span1(Gpd), is (up to isomorphism) a span:

1
!← X

Ψ→ G

The cardinality of a state is given by D(X , !,Ψ) seen as a vector:

|Ψ| =
∑
g∈G
|Ψ−1(g)|[g ] ∈ D(G)

where |Ψ−1(g)| is the groupoid cardinality of the essential preimage of g .

Example

In the case G = FinSet0, a state is a (Baez-Dolan) “stuff type”, which
generalizes Joyal’s “combinatorial species”. Then Ψ is the “underlying
set” functor, and objects of X are called “Ψ-stuffed finite sets” (or
“Ψ-structured” when Ψ is faithful - i.e. when all morphisms in X are
determined by those in FinSet0).
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The composite of a state and costate is “just” a groupoid, as shown:

〈Ψ,Φ〉
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This defines an inner product on states: given two states, Ψ : X → G and
Φ : Y → G, the inner product is a groupoid 〈Ψ,Φ〉, given as a (weak)
pullback.

Theorem (Baez, Dolan)

| 〈Φ,Ψ〉 | = 〈|Φ|, |Ψ|〉
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More generally, a span T in Gpd from G1 to G2 acts on a state Ψ over G1

by composition:

T Ψ
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Theorem (Baez, Dolan)

|T Ψ| = |T ||Ψ|

where |T | = D(T , s, t) is represented by the matrix with:

|T |([a],[b]) = |(s, t)−1(a, b)|
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Idea: Groupoid cardinality gives an equivalence relation on groupoids,
which is coarser than isomorphism. (Unlike sets, where cardinalities are
isomorphism classes). Degroupoidification gives invariants (up to
equivalence) for groupoids and spans, but they lose some information.
We’ll describe a richer invariant: a (weak) 2-functor

Λ : Span2(Gpd)→ 2Vect

where Span2(Gpd) is a 2-category of spans of groupoids and 2Vect is the
2-category of Kapranov-Voevodsky 2-vector spaces:

Definition

A Kapranov–Voevodsky 2-vector space is a C-linear finitely semisimple
additive category (one generated by simple objects x , where
hom(x , x) ∼= C). A 2-linear map between 2-vector spaces is a C-linear
additive functor.

These, together with natural transformations between 2-linear maps, form
a 2-category.
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The bicategory Span2(Gpd) (similar for any 2-category with weak
pullbacks) has:

Objects: Groupoids

Morphisms: Spans of groupoids

Composition defined by weak pullback:

X ′ ◦ X
S
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2-Morphisms : isomorphism classes of spans of span maps

monoidal structure from the product in Gpd

Note: This weak pullback of groupoids has objects (x , α, x ′), where
α : f (x)→ g(x ′), and its morphisms are commuting squares.
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Theorem (Kapranov, Voevodsky)

Any 2-vector space is equivalent to Vectk (objects k-tuples of vector
spaces, morphisms k-tuples of linear maps) for some k.
Any 2-linear map T : Vectk→Vectl is naturally isomorphic to a map of
the form V1,1 . . . V1,k

...
...

Vl ,1 . . . Vl ,k


W1

...
Wk

 =


⊕k

i=1 V1,i ⊗Wi
...⊕k

i=1 Vl ,i ⊗Wi


Any natural transformation can be written as a matrix of linear maps
between the components.

Theorem

Any C-linear functor F : V1→V2 between KV 2-vector spaces is
necessarily additive and exact.

Such a functor is a 2-linear map.
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Lemma

If G is an essentially finite groupoid, the functor category
Λ(G) = [G,Vect] is a KV 2-vector space.

Note: If the automorphism groups of (isomorphism classes of) objects of
G are G1, . . . ,Gn, then we have

[G,Vect] ∼=
∏
j

Rep(Gj)

So the “basis elements” (simple objects) in [G,Vect] are labeled by
([g ],V ), where [g ] ∈ G and V an irreducible rep of Aut(g).
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Theorem (Morton)

If X and B are essentially finite groupoids, a functor f : X→B gives two
2-linear maps:

f ∗ : Λ(B)→Λ(X)

namely composition with f , with f ∗F = F ◦ f and

f∗ : Λ(X)→Λ(B)

called “pushforward along f ”. Furthermore, f∗ is the two-sided adjoint to
f ∗ (i.e. both left-adjoint and right-adjoint).

In fact, the adjoint map

f∗ : [X,Vect]→[B,Vect]

to the composition acts on F : X→ Vect to give the induced
representation.

Jeffrey C. Morton (U.W.O.) Groupoidification and 2-Linearization: Discrete and Smooth IST Jul 2010 18 / 33



Given a group homomorphism h : G→H, and a representation
R : G→GL(V ), there is an induced representation of H, namely
C[H]⊗C[G ] V :

For our functor of groupoids, f : X→B, we can push forward a
representation in the same way. If more than one object is sent to the
same b ∈ B, we get a direct sum of all their contributions:

f∗(F )(b) ∼=
⊕

f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

(The direct sum is over the essential preimage of b in X .) This is a Kan
extension of the functor F along f .
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Definition

For a span of groupoids X : A→B in Span2(Gpd) define the 2-linear map:

Λ(X , s, t) = t∗ ◦ s∗ : Λ(A) −→ Λ(B)

So then:

Λ(X , s, t)(F )(b) =
⊕

t(x)=b

C[Aut(b)]⊗C[Aut(x)] (F ◦ s)(x)

Picking basis elements ([a],V ) ∈ Λ(A), and ([b],W ) ∈ Λ(B), and using
Frobenius reciprocity (i.e. the adjointness of our two 2-linear maps), we
get that Λ(X , s, t) is represented by the matrix:

Λ(X , s, t)([a],V ),([b],W ) = homRep(Aut(b))(t∗ ◦ s∗(V ),W )

'
⊕

[x]∈(s,t)−1([a],[b])

homRep(Aut(x))(s∗(V ), t∗(W ))
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The pull-push framework here is a special case of a general story about
sheaves valued in different categories.
For Set-valued sheaves, this involves:

Categories of sheaves, toposes

Direct and inverse image functors f ∗, f∗ associated to continuous f

Geometric Morphisms

For sheaves valued in Ab (abelian groups) or R −Mod (modules) it
involves:

Complexes of sheaves (resolutions)

Derived categories (homotopy category)

Grothendieck operations for derived categories

Things are simpler for us because:

Vector spaces are flat (resolutions are trivial), and so

All C-linear functors are exact
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However, for Vect-presheaves, we have something extra, because adjoints
are two-sided:
The most general 2-morphism for us is a span between spans, Y : X1→X2

for X1,X2 : A→B:

X1

s1

��~~
~~

~~
~~ t1

  
@@

@@
@@

@

A Y

s

OO

t
��

B

X2

s2

``@@@@@@@@ t2

>>~~~~~~~

So define a natural transformation:

Λ(Y , s, t) : (t1)∗ ◦ (s1)∗→(t2)∗ ◦ (s2)∗

Up to scale, this can be constructed using the unit and counit for the
adjunctions between t∗ and t∗, and between s∗ and s∗, and can be seen as
another pull-push construction.
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Call the adjunctions in which f∗ is left or right adjoint to f ∗ the left and
right adjunctions respectively. These have f∗ defined by left or right Kan
extension, and are defined in each component using homC[Aut(x)] and
⊗C[Aut(x)].
The Nakayama isomorphism is a canonical isomorphism between these (in
particular: it defines an isomorphism even over base rings other than C):

N :
⊕

[x]|f (x)∼=b

homC[Aut(x)](C[Aut(b)],F (x))

→
⊕

[x]|f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

given by the exterior trace map in each factor of the sum:

N :
⊕

[x]|f (x)∼=b

φx 7→
⊕

[x]|f (x)∼=b

1

#Aut(x)

∑
g∈Aut(b)

g ⊗ φx(g−1)
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We use the Nakayama isomorphism to identify left and right adjoints as
follows...
For each map f : X →B, there are units and counits for both the left and
right adjunctions:

ηL :Id[X ,Vect] =⇒ f ∗f∗

εL :f∗f
∗ =⇒ Id[B,Vect]

ηR :Id[B,Vect] =⇒ f∗f
∗

εR :f ∗f∗ =⇒ Id[X ,Vect]

Given a a span of span maps Y : X1→X2, define:

Λ(Y , s, t) = εL,t ◦ N−1 ◦ ηR,s
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In coordinates:

Λ(Y , s, t)[([a],V ),([b],W )] :
⊕
[x1]

homRep(Aut(x1))[s∗1 (V ), t∗1 (W )]

→
⊕
[x2]

homRep(Aut(x2))[s∗2 (V ), t∗2 (W )]

For each pair ([x1], [x2]), this gives a map

hom[s∗1 (V ), t∗1 (W )]→ hom[s∗2 (V ), t∗2 (W )]

given by a sum over [y ] ∈ (s, t)−1([x1], [x2]).

Note: now we have spaces of intertwiners between representations of the
groups Aut(xi ). With D, we only had a copy of C for each [xi ].
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Pulling a representation F back by f ∗ gives a representation of a new
group, on the same space. An intertwiner is a linear map on this space
which commutes with the representation.

So if φ : s∗1 (V )→ t∗1 (W ) is an intertwiner in Rep(Aut(x1)) then the same
underlying linear map is also an intertwiner
s∗(φ) : (s1 ◦ s)∗(V )→(t1 ◦ s)∗(W ) in Rep(Aut(y)). However, for the
pushforward along t, the corresponding linear operator behaves as follows:

For φ ∈ hom[s∗1 (V ), t∗1 (W )] we get:

Λ(Y , s, t)[([a],V ),([b],W )]|([x1],[x2])(φ) =
|(s, t)−1(x1, x2)|
|Aut(x2)|

∑
g∈Aut(x2)

gφg−1

(This uses the essential preimage (s, t)−1(x1, x2) as before.)

The group average here projects a linear map into the space of
intertwiners.
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Given all this, the main fact is:

Theorem (Morton)

The process Λ : Span2(Gpd)→ 2Vect is a weak 2-functor.

Furthermore:

Theorem (Morton)

Restricting to homSpan2(Gpd)(1, 1):

A
!

����
��

��
�� !

��
??

??
??

??

1 X

s

OO

t
��

1

B

!
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where 1 is the (terminal) groupoid with one object and one morphism, Λ
on 2-morphisms is just the degroupoidification functor D.
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For quantum mechanics, the classical configuration space S is usually not
discrete.
Minimally, (S , µ) a measure space, and L2(S , µ) is the Hilbert space for
the corresponding quantum system. Interesting cases occur when S is a
manifold and µ comes from a volume form.
Duplicating the above runs into some difficulties:

Direct sums become direct integrals - which are not (co)limits

Thus, push-forward is not just Kan extension of functors

Topology is nontrivial, so must deal explicitly with sheaves

Must work with infinite-dimensional vector spaces, which are not
canonically iso. to double duals

Work on this is ongoing - but we’ll describe some of the ingredients next.
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Luckily, Hilbert spaces are canonically isomorphic to their double duals. So
to start with:

Definition

If (X , µ) is a measurable space Meas(X) is the category with:

Objects: measurable fields of Hilbert spaces on (X ,M): i.e.
X -indexed families of Hilbert spaces Hx with a Hilbert space of
measurable sections

Morphisms: measurable fields of bounded linear maps between
Hilbert spaces, fx : Hx→Kx so that ||f || (the operator norm of f ) is
measurable.

This is the equivalent of a measurable function. Imposing L2 condition
gives a categorification of L2(X , µ).
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A measurable field of Hilbert spaces on X determines a measurable sheaf
by direct integration: given a measurable U ⊂ X , this assigns∫ ⊕

U
dµ(x)Hx

where the direct integral is a Hilbert space of sections with inner product

〈φ, ψ〉 =

∫
U

dµ(x)〈φx , ψx〉

So this gives a measurable sheaf of Hilbert spaces in MSh(X , µ).
When X is a groupoid, a functor will define an equivariant sheaf : for each
morphism g : x→ x ′, the functor defines an isomorphism Hg : Hx→Hx ′ .
In particular, Hx carries a representation of the group Aut(x).
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Definition

A disintegration between two measure spaces consists of:

A measurable function f : (X ,A, µ)→ (Y ,B, ν)

A family (Xy ,Ay , µy )y∈Y where:
I Xy = f −1(y)
I Ay = {A ∩ Xy |A ∈ A}
I µy is a measure on Xy

satisfying some obvious properties.

Theorem (Wendt)

Given a disintegration f : (X , µ)→(B, ν), there is an adjoint pair of
functors

MSh(X )
f ∗→←
f∗

MSh(Y )

Needed: An equivariant version of this theorem.
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An equivalent of the external trace map and Nakayama isomorphism
requires all groups around to have measures. When this all works out,
instead of recovering groupoid cardinality, we should recover something
like Weinstein’s volume of a differentiable stack.
This requires that the groupoid be equipped with:

A measure µ on the space of objects, and

For each x ∈ Ob(X ), a measure νx on the space of morphisms into x ,
t−1(x)

which transform in a specified way when passing from one groupoid
representing the stack to another. (Here, “stack” = “equivalence class of
groupoids”)
Then the volume of the stack is:

vol(X ) =

∫
X

dµ(x)
(∫

t−1(x)
dνx(g)

)−1

Needed: Necessary and sufficient conditions on groupoids X to ensure this
all works out. E.g. groupoids internal to Meas (some arise from
constructions with compact Lie groups)
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Generally, to extend both degroupoidification and 2-linearization to
smooth/measured groupoids, we follow a similar construction, but:
• Finite product of Rep(Aut(xi )) 7→ MeasG(G(0))
• Direct sum 7→ direct integral
• Counting measure 7→ measure on object space
• Groupoid cardinality 7→ volume of groupoid (cf. Weinstein)
The categorical/algebraic part of the construction is the same.
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